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The reference book on EELS

• Electron Energy-Loss Spectroscopy in 
the Electron Microscope 
Ray F. Egerton 
https://link.springer.com/book/
10.1007/978-1-4419-9583-4
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Features of the EEL spectrum
• Energy loss > 0 ! Inelastic scattering
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Inelastic scattering
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Zero-loss peak:  
elastically-scattered e–

Low-loss spectrum 0-50 eV: 
phonons; valence excitations - plasmons (bulk & surface); 

interband transitions

Zero-loss peak:  
elastically-scattered e–

Low-loss spectrum 0-50 eV: 
phonons; valence excitations - plasmons (bulk & surface); 

interband transitions

Core-shell EELS 50-3000 eV: 
inner-shell ionization

• Energy loss > 0 ! Inelastic scattering
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Electron energy-loss spectrometer
• Typical EEL spectrometer: magnetic prism
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Post-column spectrometer
• Post-column spectrometer most common type used for materials science/physics 

• For instance: Gatan EEL spectrometer
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STEM-EELS spectrum imaging
• During STEM imaging, collect the forward-

scattered electrons in the spectrometer 
entrance aperture 

• Record 3D data cube with a spectrum for 
each probe position (x, y)
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Energy-filtered TEM (EFTEM)
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• Record TEM image(s) made from 
transmitted electrons having certain 
energy 

• Images defined by energy-loss E and 
energy window 

• Zero-loss filtering: TEM image of 
elastically-scattered electrons with no 
energy loss 

• Can create 3D data-cube by recording 
image series at consecutive energy 
losses



Energy-filtered TEM ray diagram
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Spectroscopy mode ray diagram
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Two possibilities: in-column or post-column



In-column Omega filter – e.g. JEOL 2200FS
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Zero-loss EFTEM
• Zero-loss filtering can be used to remove diffuse inelastic scattering in TEM 

images of thick samples and in diffraction patterns 

• Example – ODS reinforced steel, sample ~250 nm thick:
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Unfiltered bright-field TEM: Zero-loss TEM:



Energy-filtered TEM (EFTEM)
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• Record TEM image(s) made from 
transmitted electrons having a defined 
energy 

• Images defined by energy-loss E and 
energy window 

• Zero-loss filtering: TEM image of 
elastically-scattered electrons with no 
energy loss 

• EFTEM spectrum imaging: 
create 3D data-cube by recording image 
series at consecutive energy losses
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Energy-filtered TEM (EFTEM)

20

• Record TEM image(s) made from 
transmitted electrons having a defined 
energy 

• Images defined by energy-loss E and 
energy window 

• EFTEM spectrum imaging: 
create 3D data-cube by recording image 
series at consecutive energy losses

ΔE

ΔE

E
x

y

I

• Zero-loss filtering: TEM image of 
elastically-scattered electrons with no 
energy loss 

E
x

y
No equivalent with EDXS! 

EDXS mapping can only be done in STEM mode
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Inelastic scattering geometry
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Double differential scattering cross section
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Relevant quantity: the double 
differential scattering cross-
section (DDSCS) as a function 
of angle ! and energy loss E. 

It is given for one atom. 

We consider a transition from 
initial state | I > to final state | F > 
for the core electron of the atom 



Angular distribution of the ionisation edge
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Since:        q2 = k2(θ2 + θE
2)

DDSCS has an angular dependence:       DDSCS(θ) ∝
1

θ2 + θE
2

Therefore the ionisation edge has an angular distribution of intensity that is Lorentzian

With quantum mechanical derivation, find that DDSCS for inelastic events varies as 
1
q2



Angular distribution of the ionisation edge
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∂2σ
∂Ω∂E

∝
1

θ2 + θE
2

 is the scattering angle for the half width at half maximum (HWHM) of this LorentzianθE

 is therefore considered as the characteristic angle of scattering, because most 
of the ionisation edge intensity will fall within a collection aperture of this angle

θE



Inelastic scattering angular range
• Inelastic scattering concentrated into much smaller angles than elastic scattering 

• Characteristic angle for scattering:
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θE =
Emγ
ℏ2k2

=
E

γmv2
∼

E
2E0
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Low-loss EELS
• For  ~1–50 eV: excitation of plasmons 

• Volume/bulk plasmon: oscillation of valence electrons

!E
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Example low-loss: crystalline Si
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Example low-loss: crystalline Si



• As specimen thickness increases, can have multiple scattering: plural scattering

• Inelastic scattering mean free path: 𝜆

• From Poisson statistics: 

Plural scattering

30

t / ! = 0.16 t / ! = 0.46



Plural scattering; mean free path
• What is likely to influence the inelastic scattering mean free path?
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Sample thickness measurement
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• By calculating 𝜆 the sample thickness t can be estimated 

• Two routines in Digital Micrograph: 

- Kramers-Kronig sum rule 

- Log-ratio (absolute) – Bethe sum rule 

• Accuracy ~ ± 5–10 nm
t / ! = 0.46



Spectral deconvolution
• Deconvolution can be used to retrieve the single-scattering distribution (SSD) 

• Core-loss spectra: use Fourier-ratio deconvolution (needs low-loss spectrum) 

• Low-loss spectra: use Fourier-log deconvolution:
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• Thick sample: t / 𝜆 ! 2.3 

• Well-defined plasmon peak (free electron gas) 

• Multiple orders of plasmon peak excitation

Multiple scattering: Mg sample
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• Thick sample: t / 𝜆 ! 2.3 

• Well-defined plasmon peak (free electron gas) 

• Multiple orders of plasmon peak excitation

Multiple scattering: Mg sample
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Deconvolved



Ex. plasmon use: mapping elemental Si
• Use plasmon peak to map elemental Si nano-filaments in SiOx thin films
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H2

Cuony et al. Adv. Mater. 24 1182 (2012)

• Increasing H2 plasma ! increased phase separation
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Ionisation edge / “core-loss” EELS
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Ionisation edge / “core-loss” analysis
• Elemental ionisation edges superimposed on exponentially decaying 

background (fit with power-law model) 

• Signal intensity proportional to projected atomic concentration and elemental 
partial ionisation scattering cross-section "𝜎

39

(La, Nd)NiO3 alloy
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(La, Nd)NiO3 alloy



Elemental mapping – STEM-EELS
• Produce elemental maps by plotting integrated intensity in background-

subtracted energy-loss “windows” that select different ionisation edges
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Example: NdNiO3 / SmNiO3
superlattice on LaAlO3

Dominguez et al. Nature Mater. 19 1182 (2020)



Elemental mapping – EFTEM
• Example: EFTEM spectrum imaging of ODS reinforced steel 

• Statistics obtained on spatial distribution of different particle types
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Spectral fingerprints:

! Y-O particles: 6%, 16 nm

! Ti-Cr-O particles: 4%, 33 nm

! Y-Ti-O particles: 90%, 6 nm

Unifantowicz et al. J. Nuclear Mater. 422 131 (2012)



Partial scattering cross section
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Duncan Alexander EPFL. CCMX 2022: Analytical Electron Microscopy (EELS & EFTEM)

Ionisation edge / “core-loss” analysis
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High energy tail of lower energy 
losses: background removal

Multiple scattering: 
Fourier-ratio deconvolution

Theoretical model – 
e.g. hydrogenic, Hartree-Slater 
(Digital Micrograph)



Elemental quantification

• Number of atoms per unit area  given by:N
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N = I
j0!!

Na

Nb

= Ia
Ib

!! b

!! a

• Elemental percentages calculated using:

• For good quantification, need knowledge and correct choice of 
convergence semi-angle  and EEL spectrometer collection semi-angle ! !

• Fit background with power-law model: IB = AE−r



Elemental quantification
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• Example: BN measured in TEM mode at 200 
keV: 

• B K-edge at 188 eV 

• N K-edge at 401 eV 

• TEM mode: ;  

• Quantification: 47 at.% B / 53 at.% N

α ≈ 0 mrad β = 100 mrad

Note: Consider characteristic angle of scattering: θE ∼
E

2E0
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Energy-loss near edge structure (ELNES)
• Ionisation edge onsets show peaks related to unoccupied density of states (DOS) 

• Also called “fine structure”
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Core-loss fine structure (ELNES)
• Example: carbon K-edge
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Diamond Graphite



ELNES “White line” analysis
• ELNES peaks used to determine valence/oxidation state e.g. of transition metals 

• Example: Co oxidation state
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Wang et al. Micron 31 571 (2000)



ELNES “White line” analysis
• ELNES peaks used to determine valence/oxidation state e.g. of transition metals 

• Example: Ni oxidation state during in-situ reduction of NiO
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Jeangros et al. J. Mater. Sci. 48 2893 (2013)



ELNES fine structure
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ELNES fine structure
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ELNES fine structure
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ELNES fine structure
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